Hydration of NH+4 in water: bifurcated hydrogen bonding structures and fast rotational dynamics

Jianqing Guo,  Liying Zhou,  Andrea Zen,  Angelos Michaelides, Xifan Wu,  Enge Wang, Limei Xu, and Ji Chen

Phys. Rev. Lett.

Abstract
Understanding the hydration and diffusion of ions in water at the molecular level is a topic of widespread importance. The ammonium ion (NH+4) is an exemplar system that has received attention for decades because of its complex hydration structure and relevance in industry. Here we report a study of the hydration and the rotational diffusion of NH+4 in water using ab initio molecular dynamics simulations and quantum Monte Carlo calculations. We find that the hydration structure of NH+4 features bifurcated hydrogen bonds, which leads to a rotational mechanism involving the simultaneous switching of a pair of bifurcated hydrogen bonds. The proposed hydration structure and rotational mechanism are supported by existing experimental measurements, and they also help to rationalize the measured fast rotation of NH+4 in water. This study highlights how subtle changes in the electronic structure of hydrogen bonds impacts the hydration structure, which consequently affects the dynamics of ions and molecules in hydrogen bonded systems.

URL: https://doi.org/10.1103/PhysRevLett.125.106001